A Solar Energy Powered Autonomous Wireless Actuator Node for Irrigation Systems

نویسندگان

  • J. Rafael Lajara
  • Jorge Alberola
  • José Pelegrí-Sebastiá
چکیده

The design of a fully autonomous and wireless actuator node ("wEcoValve mote") based on the IEEE 802.15.4 standard is presented. The system allows remote control (open/close) of a 3-lead magnetic latch solenoid, commonly used in drip irrigation systems in applications such as agricultural areas, greenhouses, gardens, etc. The very low power consumption of the system in conjunction with the low power consumption of the valve, only when switching positions, allows the system to be solar powered, thus eliminating the need of wires and facilitating its deployment. By using supercapacitors recharged from a specifically designed solar power module, the need to replace batteries is also eliminated and the system is completely autonomous and maintenance free. The "wEcoValve mote" firmware is based on a synchronous protocol that allows a bidirectional communication with a latency optimized for real-time work, with a synchronization time between nodes of 4 s, thus achieving a power consumption average of 2.9 mW.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Web Based Monitoring and Irrigation System with Energy Autonomous Wireless Sensor Network for Precision Agriculture

The use of Precision Agriculture systems is in its infancy in Greece, because of the high fragmented land and the adherence of farmers to traditional farming methods. This paper presents the design, implementation and performance evaluation of an integrated agricultural monitoring and irrigation system using energy-autonomous wireless sensors and actuators. Monitoring and irrigation of the fiel...

متن کامل

Open-WiSe: A Solar Powered Wireless Sensor Network Platform

Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe). The design and implementation of the so...

متن کامل

Autonomous Sensor Node Powered by CM-Scale Benthic Microbial Fuel Cell and Low-Cost and Off-the-Shelf Components

Microbial fuel cells (MFC’s) are promising energy harvesters to constantly supply energy to sensors deployed in aquatic environments where solar, thermal and vibration sources are inadequate. In order to show the ready-to-use MFC potential as energy scavengers, this paper presents the association of a durable benthic MFC with a few dollars of commercially-available power management units (PMU’s...

متن کامل

Adjusting the Power Consumption of a Solar Energy powered Wireless Network Node in Accordance with Weather Forecasts

We present how weather forecasts estimating the solar radiation for the following days at a given location can be used to adjust the power consumption of a wireless network node. The node is powered by a solar panel which recharges a battery. We discuss two methods to adjust the configuration of the wireless node according to weather forecasts. We are using OLSR routing parameters and hardware ...

متن کامل

Solar Powered Smart Irrigation System

Cost effective solar power can be the answer for all our energy needs. Solar powered smart irrigation systems are the answer to the Indian farmer. This system consists of solar powered water pump along with an automatic water flow control using a moisture sensor. It is the proposed solution for the present energy crisis for the Indian farmers. This system conserves electricity by reducing the u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2011